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A COMPUTER MOVIE SIMULATING URBAN
GROWTH IN THE DETROIT REGION

W. R. TOBLER

University of Michigan

In one classification of models [16]
the simulation to be described would be
considered a demographic model whose
primary objectives are instructional’
The model developed here may be used
for forecasting, but was not constructed
for this spcufc purpose, and it is a
de 'mographic model since it describes
only population growth, \\1[]: pam( u]‘u
unp}msls on tho

As a pxtmlw I make the ds\umptmn
that everything is related to (\m\thmtf
else. Sup(lhcmllv mnsldue(l lhls wou

a uno]].uv ' ade is t}hlt
social sy stems are dlfﬁmllt because thev
contain mlm\' variables; numerous ]wnpl(
confuse the number of variables with the
degree of complexity. Because of clo-
sure, however, models with infinite
numbers of variables are in fact some-
times more tractable than models with
a finite but large number of variables
27]. My point here is that the utmost
effort must be exercised to avoid writing
a complicated model. It is very difficult
to write a simple model but this, after
all, is one of the ()b]ccn\ es. If one plots
a graph with increasing (omplmlh on
the abscissa, and incre asing effectiveness
on the other axis, it is \wll known that
science is only asymptotic to one hun-
dred percent ‘effectiveness. No scientist
claims otherwise. But the rate at which
this effectiveness is achieved is extremely
import:mt, ceteris pu-rilm.s-. In othe'r
words, the objective is high success with
a simple model. Statistical procedures
which order the eigenvalues are popular
for just this reason. Because a process
appears complicated is also no reason
to assume that it is the result of com-

1 For a review of urban maodels see Lee [21],

plicated rules, examples are: the game
of chess. the motion of the planets before
Copernicus; evolution before Darwin
and the double helix, geology before
Hutton, mechanics before Newton, geog-
raphy before Christaller, and so on [3].

The p].mx]hnht\ of models also varies,

but this is known to be an mmmplvu
guide to the scientific usefulness of

model. The model 1 describe, for exam-
ple, recognizes that people die, are born,
and mlgmtc It does not (\pl ain \\'h\
people die, are born, and migrate. Some
would insist that I should incorporate
more behavioral notions, but then il
would be necessary to discuss the psy-
chology of urban growth; to do this
plopmi\ requires a treatise on the bio-
chemistry of perception, which in turn
requires ‘discussion of the physics of ion
interchange, and so on. My attitude,
rather, is that since I have not explained
birth, death, or migration, the model
might apply to any p}unmnvnon which
h.l\ these characteristics, e. g., people,
plants, animals, machines (which are
built, moved, and destroyed), or ideas.
The level of generality seems inversely
related to tho spvmﬁmtv of the model.
A model of urban growth s}muld apply
to all 92,200 cities [9 P §1] (not just to
one city), now and in the future, and
to other things that grow, These are
rather Ambltluus aims. Conversely, the
model attempts to relate population
totals only on the basis of prior popula-
tions, and neglects employment oppor-
tunities, tupo;,mph\ transportation, and
other distinctions between site qualities.
Consequently the only difference be-
tween places in the model is their popu-
lation density, and other demographic
differences are ignored. Similarly, the
population model attempts to relate
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population growth only to populanon in
the immediately preceding time pormd
Since, by dssumptl()n everything is re-
lated to (\cr\thuw else, such a n(‘dlc(l
of history mav prove disastrous, 'lo in-
clude all hl\l()l’\v' however, is known to
require mtv(,m] equations of the Volterra
type [34] and these complicate the
presentation.* We may also determine
empirically whether a neglect of history
has serious consequences, at least in the
short run. In Summary, the many simpli-
fications of the model are acknowledged
as advantages, particularly for pedagogic
purposes.

Conceptually, I have been influenced
by Borc}wrt’s model of the twin cities
region [2]. This was later applied to De-
troit by Deskins, and I have used his
data [8]. As formulated by Borchert and
Deskins the model is in graphical form
and suggests that the lines of growth
(om(ldc with extrapolations, modified
by local conditions, of the orthogonal
trajectories to the lo\(»l curves of popu-
lation density. The difficult step is to
estimate the amount of growth along
these trajectories. Prosumabl\ this is pro-
purtmm] to the populdtum pressure, or
the gradient of the population dumt\
[23].

Following Pollack [26] specific equa-
tions may now be postulated, letting
3 Todt
denote population growth at any loca-
tion:

(P
di
(“),
cli

dp
i

dp oP\? ol A
7 k ({,\'> : (\) , growth

is proportional to the population grad-
ient, or

* Also see Brown [4].

k, constant regional growth, or

kP, proportional growth, or

k(1 — «)P, logistic growth, or

P a%

= k| — +- — |, growth is
dt ox? oy ™
proportional to the rate of change of the
population gradient, or
d*P P a*P
— = k ( —— + ——— ), theaccel-
dt* ox® oyt
eration of growth is proportional to the
population curvature, and so on,

Each of these equations could now be
examined in some detail, or converted
to finite difference form for empirical
estimation purposes, but 1 pre fer to
generalize in a different direction,

The simulation of urban growth raises
questions of geographical syntax. As an
example, recall t}mt many predictive
mmh;ﬁs are of the form

C = BA

where A is an n x 1 vector of known
observations, B is an m x n transforma-
tion matrix of coefficients or transition
probabilities, and C is the m x 1 vector
to be predicted. This scheme seems in-
adequate as a geogr 1phl(.1l caleulus.
The d(‘ocfr.lphlcal situation is better rep-
resented, in a simplified special case, as

D = NGE

where G and DD are now m x n matrices,
isomorphic to maps of the geographical
landscape [32], and N and E are coeffi-
cient matrices r(-prcscnling North-South
and East-West effects., The matrix D
could of course be converted into a long
column vector (mn x 1) by partitioning
along the columns and the placing of
these one above the other. But this
destroys the isomorphismn to the geo-
graphical situation. Since “the purpose of
computing is insight, not numbers,” 1
aim for a simple structure [I3]. Using
geographical state matrices seems more
natural than using state vectors.

To some extent attempts to simulate
urban growth are also related to the
problem of comparing geographical
umps, a quesmm which occurs froqnvnt-
ly in geography [30]. Let me clarity this
analogy. Suppose I have a map showing
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« Tout interagit avec tout dans
'espace géeographique, mais
deux objets proches ont plus
de chances de le faire que
deux objets eloignes»

W.Tobler, 1970
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Dépendance spatiale Distribution aléatoire des mémes valeurs



Datation au carbone 14 de 765 sites neolithigques

(IS
B O G

) O
O RAGTOO o

O

Q

Données: Pinhasi et al. 2005, PLOS Biology | Carte: SRTM, LASIG/EPFL
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Selon Tobler et la

premiere loi de la geographie

«Tout interagit avec tout, mais les objets
proches ont plus de chances de le faire que
des objets eloignes»

Les phenomenes

naturels (temperature de

'air), ou socio-demographiques (densite de
population) ne sont pas distribués au hasard
dans I'espace geographique

Pour mesurer |a structure spatiale de ces

phenomenes, on dolit utiliser des outils de Ia

statistique classiq

Je qui requierent

'iIndépendance er

tre les échantillons et une

distribution aléatol

re de ces échantillons




LesS outils de l1a statistique classique...

Ne sont pas prevus pour etre appliques dans
un contexte geospatial

Leur utilisation est basee sur I'hypothese selon
laquelle 'espace géographique est neutre

Cet espace geographique constitue le simple
support sans friction sur lequel se déroulent les
phenomenes éetudies

Theoriguement, dans ce cadre, |a localisation
d'observations dans |'espace ne doit pas
Influencer leurs attributs

Ce qui n'est pas le cas, donc biais possibles



[ [ y 4 [ ] »y [
|

Regression linéaire : devrait étre calculéee avec
Sélection aleatowe des observations selectionnees selon une

N o7 procédure aléatoire

’é Si les observations sont spatialement
dependantes, les valeurs estimées sont
biaisées pour toute la zone d'etude
Des valeurs exceptionnelles localisees dans
des sous-regions particulieres influencent les

valeurs préedites sur tout le territoire analyseé

Une forte corrélation entre deux attributs
d’echantillons situes dans une petite sous-
region aura un effet sur toute la zone étudiee




Des approaches specifiques ont eté développees pour prendre en compte les
caractéristiques de l'information géographique (la 1ere loi de la Géographie de

Tobler)

On parle de méthodes spatialement explicites (modeles non-stationnaires vs
modeles stationnaires)

Elles respectent les lois de la statistique theorique



Distinguer la distribution spatiale observee du hasard

= differencier la distribution spatiale observee d'une distribution aleatoire
Simuler le hasard par un grand nombre de permutations aléatoires
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THE CONTIGUITY RATIO AND
STATISTICAL MAPPING

hy
R. C. GEary

Introduction and Summary

The problem discussed in this paper is to determine whether
statistics given for each “‘county” in a “country” are distributed at
random or whether they form a pattern. The statistical instrument
is the contiguity ratio ¢ defined by formula (1.1) below, which is an
obvious generalization of the Von Neumann (1941) ratio used in
one-dimensional analysis, particularly time series. While the appli-
cations in the paper are confined to one- and two-dimensional
problems, it is evident that the theory applies to any number of
dimensions. If the figures for adjoining counties are generally closer
than those for counties not adjoining, the ratio will clearly tend to
be less than unity. The constants are such that when the statistics
are distributed at random in the counties, the average value of the
ratio is unity. The statistics will be regarded as configuous if the
actual ratio found is significantly less than unity, by reference to the
standard error. The theory is discussed from the viewpoints of both
randomization and classical normal theory. With the randomization
approach, the observations themselves are the “universe” and no
assumption need be made as to the character of the frequency
distribution. In the “normal case,” the assumption is that the
observations may be regarded as a random sample from a normal
universe. In this case it seems certain that the ratio tends very
rapidly to normality as the number of counties increases. The exact
values of the first four semi-invariants are given for the normal case.
These functions depend only on the configuration, and the calculated
values for Ireland, with number of counties only 26, show that the
distribution of the ratio is very close to normal. Accordingly, one
can have confidence in deciding on significance from the standard
error.

The theory is also extended to regression problems. It is suggested
that, if the dependent variables are found to be contiguous, the fact
that the remainders after removal of the effect of independent
variables are found to lack contiguity constitutes a prima facie case
for regarding the independent variables included as completely
explaining the dependent variables. There are, of course, other, and
perhaps better, reasons for developing the regression aspects. If the
theory is to be applied to problems of contagion (morbidity and
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THE SECOND-ORDER ANALYSIS OF
STATIONARY POINT PROCESSES

B. D RIPLEY, University of Cambridge

Abstract

This paper provides a rigorous foundation for the second-order analysis of
stationary pomnt processes on general spaces. It illuminates the results Wl
Hartlett on spatial point processes, and covers the point processes of stochastic

ones. Finally some practical aspects of the analysis of
poInt PrOCesses & ed.

MOMEMNT ME E5, 5TA NARY POINT FROUCESSES, SPATIAL POINT PROCESSES,
LIME PROCESSES: HYFERFLANE PROCESSES: ASTIC GEOMETRY

1. Introduction

We assume throughout this paper that X is a topological space and G is a
topological group acting continuously on X (i.e. there is a continuous map
(g x)— gx from & = X to X satisfying g(hx)= (gh)x and ex = x). We suppose
both & and X are LCD spaces, that is locally compact Hausdorff spaces with
countable bases (which thus are o-compact). A typical example is the group G
of rigid motions acting on the plane X. Let & denote the Borel (equivalently,
Baire) a-field of X and 3 the class of relatively compact sets (in this example
the usual bounded sets). The realizations of a point process on X will be locally
finite multi-sets, i.e. collections of points from X, possibly repeated, but with only
a finite number of occurrences of points from any member of 3. (For our point
process theory we follow Ripley (1976b) which contains proofs of our assertions.)
We can identify this class with N, the class of o-additive functions n: & N
B — Z,, n corresponding to the multi-set of n{{x]) ='s for each z. Let & be the
smallest o-ficld on N making all the evaluation maps measurable; one may
count the number of points in any member of € = & M &, the class of bounded
measurable sets, (This is the natural or-field on N.) We define a point process on
X to be a measurable map Z from a probability space to (N, A), and its
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NOTES ON CONTINUOUS STOCHASTIC PHENOMENA
By P. A, P, MORAN, I'nstitute q" Statistics, !Jrjmd Uh-illﬁ:r.-rﬂy

The study of stochastic processes has naturally led to the consideration of stochastic pheno-
mena which are distei butec s of ore dime uch investigations are i
instanece, of practical interest in connexion with problems ning the distribution of soil
fertility over a field or the relations between the velocities at different points in & turbulent
fluid. A review of such work with many references has recently been given by Ghosh (1948)
(see also Matérn, 1947). In the present note I consider two :E_I[‘{_]blﬁml-] u.n'_ai.ng in the two- and
three-dimensional cases,

BELATIONS BETWEEN CONTINUOUS AND DISCONTINUOUS PROCESSES

Stochastic variables defined for points on a plane may be considered as defined at a discrete
set of points (for example, at all points with integral co-ordinates) or for & continuous domain
of points. The latter is the natural appr:,mr;h when r:i_JI'miilering sodl fr_-.rti[it}r, but in the :tt-ul'.’l_f
of the efficiency of experimental designs it is more natural to consider the fertility as varying
discontinuously from plot to plot rather than within each plot. For this reason I begin by
considering the relationship between continuous and diserete models of such phenomena.

First consider stationary stochastic processes in one dimension defined by variates z{
where { iz ‘time’ and takes either integral or a continuous range of values. Continuous
processes whose variate x(t) has a correlation function

plt) = exp[—a]¢t[] (1)

are known (Bartlett, 1947, p. 79) to exist and to have a spectral density given by

so that plty =
o0
From such a continuous process, a discrete process can be derived in two ways. First we
might consider the values of 2(t) only at discrete values of ¢t { = 0, £ 1, ... say). Such & process
would have the serial correlation

pp=exp[—A|a]|] (s=0,+1,..),
and could be regarded as being generated by a simple Markoff relation of the form

T, Ty + g

where {5,} is a stationary process which is not necessarily completely random but never-
theless has all its serial correlations zero.

In practice it is perhaps more realistic to consider diserete processes derived from con-
tinuous ones in another way. Bu ppose we write

(L3

X(s) = [

wd

1
x(t) dt, (3)

Arthur Getis
J. K. Ord

The Analysis of Spatial Association by Use of
Distance Statistics

Introduced in this paper is a family of statistics, G, that can be used as a megsure
of spatial association in a number of circumstances. The basic 3 ic is derived,
its properties are identified, and its advantages explained. Several of the G stalis-
tics make it possible to evaluate the spatial association of & varieble within a
specified distance of a single point. A comparison is made between a general G
statistic and Morvans 1 for similar hypothetical and empirical cond
empirical work includes studies of sudden infant death syndrome by county in
North Caroling and dwelling unit prices in metropolitan San DHego by zip-code
districts. Results indicate that G statistics should be used in conjunction with 1in
order to identify characteristics of patterns not revealed by the 1 statistic alone
snable us to detect local “pockets” of

INTRODUCTHON

The importance of examining spatial series for spatial correlation and autocor-
relation is undeniable. Both A in and Griffith {1988) and Arbia (1988) have
shown that failure to take ne ry steps to account for or avoid spatial autoco
relation can lead to serious errors in model interpretation. In spatial modeli
researchers must not only account for dependence structure and spatial hetero-
skedasticity, they must also assess the effects of spatial scale. In the last twenty
years a number of instruments for testing for and measuring spatial autocorrelation
have appeared. To geographers, the best-known statistics are Moran’s [ and, to a
lesser extent, Gear ¢ (TN and Ord 15973). To geologists and remote sensing
analysts, the semi-variance is most popular {Davis 1986), To spatial econometri-
cians, estimating spatial autocorrelation coeflicients of regression equations is the
usual approach {Anselin 1958).

The authors wish to thank the referees for their perceptive comments on an earlier draft, which
led to considerable improvements in the paper.

Arthur Getis is professor of geography at San Diego State University. [. K. Ord is
the Dovid H. Kinley Pro ) f Business Administration in the department of
MU NESETEnN & and informat wstems al The Pennsylvania State University.

reopraphical Analysis, Vi uly 1992) € 1992 Ohio State University Press
ubmitted 990, Revised version acce
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Les relations de voisinage
La ponderation spatiale

Le | de Moran
Significativité du | de Moran

Autocorrélation spatiale globale



But: quantifier la ressemblance entre n objets disperses sur un territoire
donné pour un attribut donne.

Par exemple: la quantité de precipitations qui tombe dans 54 communes du
Gros-de-Vaud depend-elle de la localisation de ces communes ?

Si oul —haut coefficient de ressemblance,
Si pas de relation = 0,
Si relation inverse (les valeurs voisines ne se ressemblent pas), coefficient = -1



Définir un voisinage de reférence autour de chaque unité geographique

Calculer la valeur pondérée de chaque unité (la valeur moyenne de
"attribut z dans le voisinage)

Mesurer la ressemblance entre les unites geographiques et leur voisinage

Comparer la situation observée a des situations aléatoires (permutations
aléatoires) pour tester la significativité de la mesure de ressemblance



LesS relations de voisinage

L'autocorrelation spatiale est caracterisee par une correlation entre les

mesures geographiquement voisines d'un phe 2ne mesure
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Weights File ID Variable |ide v| | Add ID Variable...
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Criteres de definition du voisinage - polygones
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Schéema de pondération spatiale

NOYAU FIXE
NOYAU VARIABLE — k plus proches voisins
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1895_70644
2031.24132
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2365.33363
247490419
2533.84933
3041.12639
181398042
1895_70644
199283081
2039 59784
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2693.1369
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1895.70644
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2365.33363
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Contiguite ordre 1

=] comvd_prec_qul.gal E ‘

<L | \Z
10291.14 10244.17

VOISINS (—w)
35, 29, 13,4, 3, 2

0 54 comvd prec 1de

_»

1
2
3 352913432 1
4

_»

9,8,43,1 10166.64 10085.33

—p

or U1 OO | O

13,9,21,1, 2 10494.71 10334.34

~ Covariance 1/CY ®;;(z;-2)(zj-z) nX(zi-2)(z;-Z)

Variance 1/nY.(zj—2)4 C X.(zi—2)>
Ou n: nombre d'unités spatiales; C: nombre de voisins ou de connexions; z;: valeur de la variable pour l'unité i,
z;: valeur de la variable pour l'unite I; @;: poids de la connexion, 1 si adjacent, O autrement

La valeur de ' varie entre +1 (correlation positive totale) et -1 (correlation negative totale); O signifie absence
d’autocorrélation, pas de dépendance spatiale, ou encore espace geographigue neutre






Lle | de Moran comme coefficient de regression

LT B o T I s O T o B o B
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Commune

Bettens
Eournens
Boussens
Daillens
Lussery-Villars
Pex (VD)
Penthalaz
Penthaz

Sullens
Vufflens-la-Ville
Asgzens

Bercher
Bioley-Onulaz
Bottens
Bretigny-sur-Morrens
Cugy (VD)
Dommartin
Echallens
Eclagnens
Essertines-sur-Yverdon
Etagniéres

Fey

Froideville

Fd

10291.14
10166.64
10494.71

9708.58

954.2.24

988516

945812

9557.04
10274.92

94.21.00
1076334
10413.65
1045268
11705.89
11519.39
11901.36
11519.02
10583.54
10281.59
10406.37
1075218
10626.72
1282119

z_barre

102441741
10085.3390
10399.5095
99040585
9583.5026
98979558
96360535
98259107
99245102
9971.7072
109531725
106559440
10526.8663
11404.4951
11450.8564
114560724
11617.84235
1085766360
10325.2212
10680.8921
107608724
10719.9970
121622771

lagged moyprec

Moran's | 0795458
I




Matural Breaks: z

[ 1 19421:9983.16] (7)

[ | 110155.6:10494.7] (15)
|:| [10583.5:11283.7] (14)
- [11352.8:12060.6] (14)
Bl [12213.6:12821.2] (4)
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“ Randomization

Espace géographigue neutre M des | d
permutations: 999 oyenne des | de

pseudo p-value: 0.001000 WIS ISSUS des, .
permutations aléatoires

| de Moran observé

T~

-1 i

1 1-0.7965 EJ[l]: -0.0189 mean: -0.0246 sd: 0.0883 z-value: 9.2941




[ | [ | [ [ [ y 4
. '

Randomization

i eur = —+1
Hypothése nulle u p'Va eur —

= 0.001

99+1

|- 0.7965 E[I]: -0.0189 mean: -0.0246 sd: 0.0883 z-value: 9.2941

p-valeur= —————————————————
Nb permutations+1
Le | de Moran de 0.79 traduit une structure
Nbl;, < Ipps+1 spatiale significativement différente d’'une
2 distribution spatiale aléatoire

Nb permutations + 1
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Du | de Moran global au | de Moran local

* el de Moran global est une somme des produits croises entre une
valeur observee en un point / et sa moyenne dans un voisinage
determine (spatial lag)

« Pour calculer un | de Moran local, on tire parti du fait que le | de Moran
global est une somme de produits croises Individuels

* On peut évaluer la similarité entre les unités spatiales en calculant un |
de Moran local pour chacune d'entre elles et en évaluant la
significativite statistigue pour chaque | obtenu

 Lasomme de tous les | de Moran locaux est egale au | de Moran
global



Difference a la moyenne locale

Z; = X;-X ou X estlamoyenne de la variable X dans le voisinage déterminé




Calcul du | de Moran local

45 (144 | 44

() 18
38 32 SZ- Moyenne = 40.]

Variance (S4) = 21.861

wwwwwwwwwwww

e z; =42 -40.111 = 1.889

« La somme des poids multipliee par les
differences a la moyenne = -0.611

« [; = (1.889/21.8061) - -0.611 = -0.093

4 889

Somme de produits croises individuels

O O
43 2889 | 020 | 0.7/22
38 -2.111 O O
44 3.869 | 025 | 09r2
47 1.889 O O
32 -8.111 0.25 | -2.028
4o 3.889 O O
39 1017 025 | -0.2r8
34 -6.111 O O

1 -0.611

y = valeur de l'attribut
Z = différence a la moyenne
® = ponderation




Cartographie du | de Moran local

¥ Hinge=1.5: Loc.Mor.l —_ O X

R E+g|QQ D 5 i
. - Q
L)
Hinge=1.5: Loc.Mor.l
Bl Loweroutier (0) [-inf:-1.375] "
Bl <25% (13) [-1.375:-0.002) § 1
|| 25%-50% (14) [-0.002:0.154) .
|| 50%-75% (14) [0.154 : 0.914)
Bl > 75% (10) [0.914: 2.288] B - °
Bl Uooer outiier (3) [2.288 - inf] §
Q
S o
o
o
8 -
=
' Loc.Mor.I
min -0.5625
max 5.0930
Q1 -0.0016
median 0.1541
Q3 0.9141
IR 0.9157
mean 0.5430
sd. 0.9792
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Significativité statistique locale
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* Permutations aléatoires (methode Monte-Carlo)
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Gi Significance Map (GDV2007)
Not Significant (30)
Dl p=0.05(11)

- p=0.01(12)
B r-0001(1)

l.-u-lae:- E[I]: -0.0189 mean: -0.0246 sd: 0.0883 z-value: 9 2941 4 1



Scatterplot de Moran pour classification

LISA Cluster Map: GDV2007, | MEDREV (999 perm)
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Dépendance spatiale de I'l|MC

Baseline, raw BMI [6481]

0-no spatial dependence [2930]
1-high-high [642]

2 - low-low [1405)

3-low-high [582]

4 - high-low [922]




Variation de la significativité locale

Individuals at baseline, raw BMI [6481]
0.001 [1225]
0.01 [1308]
0.05 [1024)




Conclusion

e Vlesure de la dependance spatiale

e Statistiques basees sur une loi simple “Everything is related to
everything else, near things are more related than distant things”

e Outil de la statistigue confirmatoire (processus stationnaires)
adapte au context spatial (processus non-stationnaires) grace aux
permutations aleatoires

e Outil puissant pour la detection de structures spatiales globales et
locales

e Analyse exploratoire des donnees (EDA)

Section Sciences et Ingénierie de I'Environnement (SIE) - ENV-444 - Systemes d'Information Geographique (SIG
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